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Abstract

Self-supervised learning of graph neural networks (GNN) is in great need because
of the widespread label scarcity issue in real-world graph/network data. Graph
contrastive learning (GCL), by training GNNs to maximize the correspondence
between the representations of the same graph in its different augmented forms,
may yield robust and transferable GNNs even without using labels. However,
GNNs trained by traditional GCL often risk capturing redundant graph features and
thus may be brittle and provide sub-par performance in downstream tasks. Here,
we propose a novel principle, termed adversarial-GCL (AD-GCL), which enables
GNNs to avoid capturing redundant information during the training by optimizing
adversarial graph augmentation strategies used in GCL. We pair AD-GCL with
theoretical explanations and design a practical instantiation based on trainable
edge-dropping graph augmentation. We experimentally validate AD-GCL2 by
comparing with the state-of-the-art GCL methods and achieve performance gains
of up-to 14% in unsupervised, 6% in transfer, and 3% in semi-supervised learning
settings overall with 18 different benchmark datasets for the tasks of molecule
property regression and classi�cation, and social network classi�cation.

1 Introduction
Graph representation learning (GRL) aims to encode graph-structured data into low-dimensional
vector representations, which has recently shown great potential in many applications in biochemistry,
physics and social science [1–3]. Graph neural networks (GNNs), inheriting the power of neural
networks [4,5], have become the almostde factoencoders for GRL [6–9]. GNNs have been mostly
studied in cases with supervised end-to-end training [10–16], where a large number of task-speci�c
labels are needed. However, in many applications, annotating labels of graph data takes a lot of time
and resources [17, 18], e.g., identifying pharmacological effect of drug molecule graphs requires
living animal experiments [19]. Therefore, recent research efforts are directed towards studying
self-supervised learning for GNNs, where only limited or even no labels are needed [18,20–31].

Designing proper self-supervised-learning principles for GNNs is crucial, as they drive what informa-
tion of graph-structured data will be captured by GNNs and may heavily impact their performance in
downstream tasks. Many previous works adopt the edge-reconstruction principle to match traditional
network-embedding requirement [32–35], where the edges of the input graph are expected to be recon-
structed based on the output of GNNs [20,21,36]. Experiments showed that these GNN models learn
to over-emphasize node proximity [23] and may lose subtle but crucial structural information, thus
failing in many tasks including node-role classi�cation [16,35,37,38] and graph classi�cation [17].

� Pan Li and Jennifer Neville co-correspond this work.
2https://github.com/susheels/adgcl
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Figure 1:The AD-GCL principle and its instantiation based on learnable edge-dropping augmentation. AD-
GCL contains two components for graph data encoding and graph data augmentation. The GNN encoderf (�)
maximizes the mutual information between the original graphG and the augmented grapht(G) while the GNN
augmenter optimizes the augmentationT(�) to remove the information from the original graph. The instantiation
of AD-GCL proposed in this work uses edge dropping: An edgee of G is randomly dropped according to
Bernoulli(! e), where! e is parameterized by the GNN augmenter.

To avoid the above issue, graph contrastive learning (GCL) has attracted more attention recently [18,
22,23,25–31]. GCL leverages the mutual information maximization principle (InfoMax) [39] that
aims to maximize the correspondence between the representations of a graph (or a node) in its
different augmented forms [18,24,25,28–31]. Perfect correspondence indicates that a representation
precisely identi�es its corresponding graph (or node) and thus the encoding procedure does not
decrease the mutual information between them.

However, researchers have found that the InfoMax principle may be risky because it may push
encoders to capture redundant information that is irrelevant to the downstream tasks: Redundant
information suf�ces to identify each graph to achieve InfoMax, but encoding it yields brittle represen-
tations and may severely deteriorate the performance of the encoder in the downstream tasks [40].
This observation reminds us of another principle, termed information bottleneck (IB) [41–46]. As
opposed to InfoMax, IB asks the encoder to capture theminimal suf�cientinformation for the down-
stream tasks. Speci�cally, IB minimizes the information from the original data while maximizing the
information that is relevant to the downstream tasks. As the redundant information gets removed,
the encoder learnt by IB tends to be more robust and transferable. Recently, IB has been applied to
GNNs [47,48]. But IB needs the knowledge of the downstream tasks that may not be available.

Hence, a natural question emerges:When the knowledge of downstream tasks are unavailable, how
to train GNNs that may remove redundant information?Previous works highlight some solutions by
designing data augmentation strategies for GCL but those strategies are typically task-related and
sub-optimal. They either leverage domain knowledge [25,28,30],e.g., node centralities in network
science or molecule motifs in bio-chemistry, or depend on extensive evaluation on the downstream
tasks, where the best strategy is selected based on validation performance [24,30].

In this paper, we approach this question by proposing a novel principle that pairs GCL with adversarial
training, termedAD-GCL, as shown in Fig.1. We particularly focus on training self-supervised GNNs
for graph-level tasks, though the idea may be generalized for node-level tasks. AD-GCL consists of
two components: The �rst component contains a GNN encoder, which adopts InfoMax to maximize
the correspondence/mutual information between the representations of the original graph and its
augmented graphs. The second component contains a GNN-based augmenter, which aims to optimize
the augmentation strategy to decrease redundant information from the original graph as much as
possible. AD-GCL essentially allows the encoder capturing the minimal suf�cient information to
distinguish graphs in the dataset. We further provide theoretical explanations of AD-GCL. We show
that with certain regularization on the search space of the augmenter, AD-GCL can yield a lower
bound guarantee of the information related to the downstream tasks, while simultaneously holding an
upper bound guarantee of the redundant information from the original graphs, which matches the
aim of the IB principle. We further give an instantiation of AD-GCL: The GNN augmenter adopts a
task-agnostic augmentation strategy and will learn an input-graph-dependent non-uniform-edge-drop
probability to perform graph augmentation.

Finally, we extensively evaluate AD-GCL on 18 different benchmark datasets for molecule property
classi�cation and regression, and social network classi�cation tasks in different setting viz. unsuper-
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vised learning (Sec. 5.1), transfer learning (Sec. 5.3) and semi-supervised learning (Sec. 5.4) learning.
AD-GCL achieves signi�cant performance gains in relative improvement and high mean ranks over
the datasets compared to state-of-the-art baselines. We also study the theoretical aspects of AD-GCL
with apt experiments and analyze the results to offer fresh perspectives (Sec. 5.2): Interestingly, we
observe that AD-GCL outperforms traditional GCL based on non-optimizable augmentation across
almost the entire range of perturbation levels.

2 Notations and Preliminaries

We �rst introduce some preliminary concepts and notations for further exposition. In this work, we
consider attributed graphsG = ( V; E) whereV is a node set andE is an edge set.G may have node
attributesf X v 2 RF j v 2 Vg and edge attributesf X e 2 RF j e 2 Eg of dimensionF . We denote
the set of the neighbors of a nodev asNv .

Learning Graph Representations. Given a set of graphsGi , i = 1 ; 2; :::; n, in some universeG,
the aim is to learn an encoderf : G ! Rd, wheref (Gi ) can be further used in some downstream
task. We also assume thatGi 's are all IID sampled from an unknown distributionPG de�ned overG.
In a downstream task, eachGi is associated with a labelyi 2 Y . Another modelq : Rd ! Y will be
learnt to predictYi based onq(f (Gi )) . We assume(Gi ; Yi )'s are IID sampled from a distribution
PG�Y = PYjG PG, wherePYjG is the conditional distribution of the graph label in the downstream
task given the graph.

Graph Neural Networks (GNNs). In this work, we focus on using GNNs, message passing GNNs
in particular [49], as the encoderf . For a graphG = ( V; E), every nodev 2 V will be paired with a
node representationhv initialized ash(0)

v = X v . These representations will be updated by a GNN.
During thekth iteration, eachh(k � 1)

v is updated usingv0s neighbourhood information expressed as,

h( k )
v = UPDATE( k )

 

h( k � 1)
v ; AGGREGATE( k )

� �
(h( k � 1)

u ; X uv ) j u 2 N v
	 �

!

(1)

whereAGGREGATE(�) is a trainable function that maps the set of node representations and edge
attributesX uv to an aggregated vector,UPDATE(�) is another trainable function that maps bothv's
current representation and the aggregated vector tov's updated representation. AfterK iterations of
Eq. 1, the graph representation is obtained by pooling the �nal set of node representations as,

f (G) :, hG = POOL
�
f h(K )

v j v 2 Vg
�

(2)

For design choices regarding aggregation, update and pooling functions we refer the reader to [3,7,8].

The Mutual Information Maximization Principle. GCL is built upon the InfoMax principle [39],
which prescribes to learn an encoderf that maximizes the mutual information or the correspondence
between the graph and its representation. The rationale behind GCL is that a graph representation
f (G) should capture the features of the graphG so that representation can distinguish this graph
from other graphs. Speci�cally, the objective of GCL follows

InfoMax: max
f

I (G; f (G)) ; whereG � PG: (3)

whereI (X 1; X 2) denotes the mutual information between two random variablesX 1 andX 2 [50].

Note that the encoderf (�) given by GNNs is not injective in the graph spaceG due to its limited
expressive power [14,15]. Speci�cally, for the graphs that cannot be distinguished by1-WL test [51],
GNNs will associate them with the same representations. We leave more discussion on 1-WL test in
Appendix C. In contrast to using CNNs as encoders, one can never expect GNNs to identify all the
graphs inGbased their representations, which introduces a unique challenge for GCL.

3 Adversarial Graph Contrastive Learning

In this section, we introduce our adversarial graph contrastive learning (AD-GCL) framework and
one of its instantiations based on edge perturbation.

3.1 Theoretical Motivation and Formulation of AD-GCL

The InfoMax principle in Eq. 3 could be problematic in practice for general representation learning.
Tschannen et al. have shown that for image classi�cation, representations capturing the information
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that is entirely irrelevant to the image labels are also able to maximize the mutual information but
such representations are de�nitely not useful for image classi�cation [40]. A similar issue can
also be observed in graph representation learning, as illustrated by Fig.2: We consider a binary
graph classi�cation problem with graphs in the dataset ogbg-molbace [52]. Two GNN encoders
with exactly the same architecture are trained to keep mutual information maximization between
graph representations and the input graphs, but one of the GNN encoders in the same time is further
supervised by random graph labels. Although the GNN encoder supervised by random labels still
keeps one-to-one correspondance between every input graph and its representation (i.e., mutual
information maximization), we may observe signi�cant performance degeneration of this GNN
encoder when evaluating it over the downstream ground-truth labels. More detailed experiment setup
is left in Appendix G.1.
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Figure 2: Two GNNs keep the mutual
information maximized between graphs
and their representations. Simultaneously,
they get supervised by ground-truth labels
(green) and random labels (blue) respec-
tively. The curves show their testing perfor-
mance on predicting ground-truth labels.

This observation inspires us to rethink what a good graph
representation is. Recently, the information bottleneck has
applied to learn graph representations [47,48]. Speci�cally,
the objective of graph information bottleneck (GIB) follows

GIB: max
f

I (f (G); Y ) � �I (G; f (G)) ; (4)

where (G; Y ) � PG�Y ; � is a positive constant.Compar-
ing Eq. 3 and Eq. 4, we may observe the different require-
ments between InfoMax and GIB: InfoMax asks for maxi-
mizing the information from the original graph, while GIB
asks for minimizing such information but simultaneously
maximizing the information that is relevant to the down-
stream tasks. As GIB asks to remove redundant information,
GIB naturally avoids the issue encountered in Fig.2. Remov-
ing extra information also makes GNNs trained w.r.t. GIB ro-
bust to adverserial attack and strongly transferrable [47,48].

Unfortunately, GIB requires the knowledge of the class labelsY from the downstream task and thus
does not apply to self-supervised training of GNNs where there are few or no labels. Then, the
question is how to learn robust and transferable GNNs in a self-supervised way.

To address this, we will develop a GCL approach that uses adversarial learning to avoid capturing
redundant information during the representation learning. In general, GCL methods use graph data
augmentation (GDA) processes to perturb the original observed graphs and decrease the amount
of information they encode. Then, the methods apply InfoMax over perturbed graph pairs (using
different GDAs) to train an encoderf to capture the remaining information.
De�nition 1 (Graph Data Augmentation (GDA)). For a graphG 2 G, T(G) denotes a graph data
augmentation ofG, which is a distribution de�ned overG conditioned onG. We uset(G) 2 G to
denote a sample ofT(G).
Speci�cally, given two ways of GDAT1 andT2, the objective of GCL becomes

GDA-GCL: max
f

I (f (t1(G)); f (t2(G))) ; whereG � PG; t i (G) � Ti (G); i 2 f 1; 2g: (5)

In practice, GDA processes are often pre-designed based on either domain knowledge or extensive
evaluation, and improper choice of GDA may severely impact the downstream performance [17,24].
We will review a few GDAs adopted in existing works in Sec.4.

In contrast to previous prede�ned GDAs, our idea, inspired by GIB, is tolearn the GDA process
(over a parameterized family), so that the encoderf can capture theminimal information that is
suf�cient to identify each graph.

AD-GCL: We optimize the following objective, over a GDA familyT (de�ned below).

AD-GCL: min
T 2T

max
f

I (f (G); f (t(G))) ; whereG � PG; t(G) � T(G); (6)

De�nition 2 (Graph Data Augmentation Family). Let T denote a family of different GDAsT� (�),
where� is the parameter in some universe. AT� (�) 2 T is a speci�c GDA with parameter� .

The min-max principle in AD-GCL aims to train the encoder such that even with a very aggressive
GDA (i.e., wheret(G) is very different fromG), the mutual information / the correspondence
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between the perturbed graph and the original graph can be maximized. Compared with the two GDAs
adopted in GDA-GCL (Eq.5), AD-GCL views the original graphG as the anchor while pushing its
perturbationT(G) as far from the anchor as it can. The automatic search overT 2 T saves a great
deal of effort evaluating different combinations of GDA as adopted in [24].

Relating AD-GCL to the downstream task. Next, we will theoretically characterize the property
of the encoder trained via AD-GCL. The analysis here not only further illustrates the rationale of
AD-GCL but helps design practicalT when some knowledge ofY is accessible. But note that our
analysis does not make any assumption on the availability ofY .

Note that GNNs learning graph representations is very different from CNNs learning image representa-
tions because GNNs are never injective mappings between the graph universeGand the representation
spaceRd, because the expressive power of GNNs is limited by the 1-WL test [14,15,51]. So, we
need to de�ne a quotient space ofGbased on the equivalence given by the 1-WL test.
De�nition 3 (Graph Quotient Space). De�ne the equivalence�= between two graphsG1

�= G2 if
G1; G2 cannot be distinguished by the 1-WL test. De�ne the quotient spaceG0 = G= �= .

So every element in the quotient space, i.e.,G0 2 G0, is a representative graph from a family of graphs
that cannot be distinguished by the 1-WL test. Note that our de�nition also allows attributed graphs.

De�nition 4 (Probability Measures inG0). De�ne PG0 over the spaceG0 such thatPG0(G0) =
PG(G �= G0) for anyG0 2 G0. Further de�nePG0�Y (G0; Y 0) = PG�Y (G �= G0; Y = Y 0). Given a
GDAT(�) de�ned overG, de�ne a distribution onG0, T0(G0) = EG� PG [T(G)jG �= G0] for G0 2 G0.

Now, we provide our theoretical results and give their implication. The proof is in the Appendix B.

Theorem 1. Suppose the encoderf is implemented by a GNN as powerful as the 1-WL test. Suppose
G is a countable space and thusG0 is a countable space. Then, the optimal solution(f � ; T � ) to
AD-GCL satis�es, lettingT0� (G0) = EG� PG [T � (G)jG �= G0],

1. I (f � (t � (G)); G j Y ) � minT 2T I (t0(G0); G0) � I (t0� (G0); Y ), where t0(G0) � T0(G0),
t0� (G0) � T0� (G0), (G; Y ) � PG�Y and(G0; Y ) � PG0�Y .

2. I (f � (G); Y ) � I (f � (t0� (G0)); Y ) = I (t0� (G0); Y ), wheret0� (G0) � T0� (G0), (G; Y ) � PG�Y
and(G0; Y ) � PG0�Y .

The statement 1 in Theorem 1 guarantees a upper bound of the information that is captured by the
representations but irrelevant to the downstream task, which matches our aim. This bound has a form
very relevant to the GIB principle (Eq.4 when� = 1 ), sinceminT 2T I (t0(G0); G0) � I (t0� (G0); Y ) �
minf [I (f (G); G) � I (f (G); Y )], wheref is a GNN encoder as powerful as the 1-WL test. But note
that this inequality also implies that the encoder given by AD-GCL may be worse than the optimal
encoder given by GIB (� = 1 ). This makes sense as GIB has the access to the downstream taskY .

The statement 2 in Theorem 1 guarantees a lower bound of the mutual information between the
learnt representations and the labels of the downstream task. As long as the GDA familyT has
a good control,I (t0� (G0); Y ) � minT 2T I (t0(G0); Y ) andI (f � (G); Y ) thus cannot be too small.
This implies that it is better to regularize when learning overT . In our instantiation, based on
edge-dropping augmentation (Sec. 3.2), we regularize the ratio of dropped edges per graph.

3.2 Instantiation of AD-GCL via Learnable Edge Perturbation

We now introduce a practical instantiation of the AD-GCL principle (Eq. 6) based on learnable
edge-dropping augmentations as illustrated in Fig. 1. (See Appendix D for a summary of AD-GCL
in its algorithmic form.) The objective of AD-GCL has two folds: (1) Optimize the encoderf
to maximize the mutual information between the representations of the original graphG and its
augmented grapht(G); (2) Optimize the GDAT(G) wheret(G) is sampled to minimize such a
mutual information. We always set the encoder as a GNNf � with learnable parameters� and next
we focus on the GDA,T� (G) that has learnable parameters� .

Learnable Edge Dropping GDA modelT� (�). Edge dropping is the operation of deleting some
edges in a graph. As a proof of concept, we adopt edge dropping to formulate the GDA family
T . Other types of GDAs such as node dropping, edge adding and feature masking can also be
paired with our AD-GCL principle. Interestingly, in our experiments, edge-dropping augmentation
optimized by AD-GCL has already achieved much better performance than any pre-de�ned random
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GDAs even carefully selected via extensive evaluation [24] (See Sec.5). Another reason that supports
edge dropping is due to our Theorem 1 statement 2, which shows that good GDAs should keep
some information related to the downstream tasks. Many GRL downstream tasks such as molecule
classi�cation only depends on the structural �ngerprints that can be represented as subgraphs of
the original graph [53]. Dropping a few edges may not change those subgraph structures and thus
keeps the information suf�cient to the downstream classi�cation. But note that this reasoning does
not mean that we leverage domain knowledge to design GDA, as the familyT is still broad and the
speci�c GDA still needs to be optimized. Moreover, experiments show that our instantiation also
works extremely well on social network classi�cation and molecule property regression, where the
evidence of subgraph �ngerprints may not exist any more.

Parameterizing T� (�). For eachG = ( V; E), we setT� (G), T 2 T as a random graph model
[54, 55] conditioning onG. Each samplet(G) � T� (G) is a graph that shares the same node set
with G while the edge set oft(G) is only a subset ofE . Each edgee 2 E will be associated with a
random variablepe � Bernoulli(! e), wheree is in t(G) if pe = 1 and is dropped otherwise.

We parameterize the Bernoulli weights! e by leveraging another GNN,i.e., theaugmenter, to run on
G according to Eq.1 ofK layers, get the �nal-layer node representationsf h(K )

v jv 2 Vg and set

! e = MLP([h(K )
u ; h(K )

z ]); wheree = ( u; z) andf h(K )
v j v 2 Vg = GNN-augmenter(G) (7)

To trainT(G) in an end-to-end fashion, we relax the discretepe to be a continuous variable in[0; 1]
and utilize the Gumbel-Max reparametrization trick [56,57]. Speci�cally,pe = Sigmoid((log � �
log(1 � � ) + ! e)=� ), where� � Uniform(0,1). As temperature hyper-parameter� ! 0, pe gets
closer to being binary. Moreover, the gradients@pe

@!e
are smooth and well de�ned. This style of edge

dropping based on a random graph model has also been used for parameterized explanations of
GNNs [58].

Regularizing T� (�). As shown in Theorem 1, a reasonable GDA should keep a certain amount
of information related to the downstream tasks (statement 2). Hence, we expect the GDAs in the
edge dropping familyT not to perform very aggressive perturbation. Therefore, we regularize the
ratio of edges being dropped per graph by enforcing the following constraint: For a graphG and its
augmented grapht(G), we add

P
e2 E ! e=jE j to the objective, where! e is de�ned in Eq.7 indicates

the probability thate gets dropped.

Putting everything together, the �nal objective is as follows.

min
�

max
�

I (f � (G); f � (t(G))) + � regEG
� X

e2 E

! e=jE j
�
; whereG � PG; t(G) � T� (G): (8)

Note� corresponds to the learnable parameters of the augmenter GNN and MLP used to derive the
! e's and� corresponds to the learnable parameters of the GNNf .

Estimating the objective in Eq.8. In our implementation, the second (regularization) term is
easy to estimate empirically. For the �rst (mutual information) term, we adopt InfoNCE as the
estimator [59–61], which is known to be a lower bound of the mutual information and is frequently
used for contrastive learning [40,59, 62]. Spec�cally, during the training, given a minibatch ofm
graphsf Gi gm

i =1 , let zi; 1 = g(f � (Gi )) andzi; 2 = g(f � (t(Gi ))) whereg(�) is the projection head
implemented by a 2-layer MLP as suggested in [62]. Withsim(�; �) denoting cosine similarity, we
estimate the mutual information for the mini-batch as follows.

I (f � (G); f � (t(G))) ! Î =
1
m

mX

i =1

log
exp(sim (zi; 1 ; zi; 2))P m

i 0=1 ;i 06= i exp(sim (zi; 1 ; zi 0;2))
(9)

4 Related Work

GNNs for GRL is a broad �eld and gets a high-level review in the Sec. 1. Here, we focus on the
topics that are most relevant to graph contrastive learning (GCL).

Contrastive learning (CL) [39,59,60,63–65] was initially proposed to train CNNs for image represen-
tation learning and has recently achieved great success [62,66]. GCL applies the idea of CL on GNNs.
In contrast to the case of CNNs, GCL trained using GNNs posts us new fundamental challenges. An
image often has multiple natural views, say by imposing different color �lters and so on. Hence,
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different views of an image give natural contrastive pairs for CL to train CNNs. However, graphs are
more abstract and the irregularity of graph structures typically provides crucial information. Thus,
designing contrastive pairs for GCL must play with irregular graph structures and thus becomes
more challenging. Some works use different parts of a graph to build contrastive pairs, including
nodesv.s.whole graphs [18,67], nodesv.s.nodes [68], nodesv.s.subgraphs [17,69]. Other works
adopt graph data augmentations (GDA) such as edge perturbation [31] to generate contrastive pairs.
Recently. GraphCL [24] gives an extensive study on different combinations of GDAs including
node dropping, edge perturbation, subgraph sampling and feature masking. Extensive evaluation
is required to determine good combinations. MVGRL [25] and GCA [30] leverage the domain
knowledge of network science and adopt network centrality to perform GDAs. Note that none of
the above methods consider optimizing augmentations. In contrast, our principle AD-GCL provides
theoretical guiding principles to optimize augmentations. Very recently, JOAO [70] adopts a bi-level
optimization framework sharing some high-level ideas with our adversarial training strategy but
has several differences: 1) the GDA search space in JOAO is set as different types of augmentation
with uniform perturbation, such as uniform edge/node dropping while we allow augmentation with
non-uniform perturbation. 2) JOAO relaxes the GDA combinatorial search problem into continuous
space via Jensen's inequality and adopts projected gradient descent to optimize. Ours, instead, adopts
Bayesian modeling plus reparameterization tricks to optimize. The performance comparison between
AD-GCL and JOAO for the tasks investigated in Sec. 5 is given in Appendix H.

Tian et al. [71] has recently proposed the InfoMin principle that shares some ideas with AD-GCL
but there are several fundamental differences. Theoretically, InfoMin needs the downstream tasks
to supervise the augmentation. Rephrased in our notation, the optimal augmentationTIM (G)
given by InfoMin (called the sweet spot in [71]) needs to satisfyI (t IM (G); Y ) = I (G; Y ) and
I (t IM (G); GjY ) = 0 , t IM (G) � TIM (G), neither of which are possible without the downstream-
task knowledge. Instead, our Theorem 1 provides more reasonable arguments and creatively suggests
using regularization to control the tradeoff. Empirically, InfoMin is applied to CNNs while AD-GCL
is applied to GNNs. AD-GCL needs to handle the above challenges due to irregular graph structures
and the limited expressive power of GNNs [14,15], which InfoMin does not consider.

5 Experiments and Analysis

This section is devoted to the empirical evaluation of the proposed instantiation of our AD-GCL
principle. Our initial focus is on unsupervised learning which is followed by analysis of the effects of
regularization. We further apply AD-GCL to transfer and semi-supervised learning. Summary of
datasets and training details for speci�c experiments are provided in Appendix E and G respectively.

5.1 Unsupervised Learning
In this setting, an encoder (speci�cally GIN [72]) is trained with different self-supervised methods
to learn graph representations, which are then evaluated by feeding these representations to make
prediction for the downstream tasks. We use datasets from Open Graph Benchmark (OGB) [52],
TU Dataset [73] and ZINC [74] for graph-level property classi�cation and regression. More details
regarding the experimental setting are provided in the Appendix G.

We consider two types of AD-GCL, where one is with a �xed regularization weight� reg = 5
(Eq.8), termed AD-GCL-FIX, and another is with� reg tuned over the validation set among
f 0:1; 0:3; 0:5; 1:0; 2:0; 5:0; 10:0g, termed AD-GCL-OPT. AD-GCL-FIX assumes any information
from the downstream task as unavailable while AD-GCL-OPT assumes the augmentation search
space has some weak information from the downstream task. A full range of analysis on how� reg
impacts AD-GCL will be investigated in Sec. 5.2. We compare AD-GCL with three unsupervised/self-
supervised learning baselines for graph-level tasks, which include randomly initialized untrained GIN
(RU-GIN) [72], InfoGraph [18] and GraphCL [24]. Previous works [18,24] show that they generally
outperform graph kernels [75–77] and network embedding methods [33,34,78,79].

We also adopt GCL with GDA based on non-adversarial edge dropping (NAD-GCL) for ablation
study. NAD-GCL drops the edges of a graph uniformly at random. We consider NAD-GCL-FIX
and NAD-GCL-OPT with different edge drop ratios. NAD-GCL-GCL adopts the edge drop ratio
of AD-GCL-FIX at the saddle point of the optimization (Eq.8) while NAD-GCL-OPT optimally
tunes the edge drop ratio over the validation datasets to match AD-GCL-OPT. We also adopt fully
supervised GIN (F-GIN) to provide an anchor of the performance. We stress that all methods adopt
GIN [72] as the encoder. Except F-GIN, all methods adopt a downstreamlinear classi�er or regressor
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Dataset NCI1 PROTEINS MUTAG DD COLLAB RDT-B RDT-M5K IMDB-B IMDB-M

F-GIN 78.27� 1.35 72.39� 2.76 90.41� 4.61 74.87� 3.56 74.82� 0.92 86.79� 2.04 53.28� 3.17 71.83� 1.93 48.46� 2.31

B
as

el
in

es RU-GIN [72] 62.98� 0.10 69.03� 0.33 87.61� 0.39 74.22� 0.30 63.08� 0.10 58.97� 0.13 27.52� 0.61 51.86� 0.33 32.81� 0.57

InfoGraph [18] 68.13� 0.59 72.57� 0.65 87.71� 1.77 75.23� 0.39 70.35� 0.64 78.79� 2.14 51.11� 0.55 71.11� 0.88 48.66� 0.67

GraphCL [24] 68.54� 0.55 72.86� 1.01 88.29� 1.31 74.70� 0.70 71.26� 0.55 82.63� 0.99 53.05� 0.40 70.80� 0.77 48.49� 0.63
A

B
-S NAD-GCL-FIX 69.23� 0.60 72.81� 0.71 88.58� 1.58 74.55� 0.55 71.56� 0.58 83.41� 0.66 52.72� 0.71 70.94� 0.77 48.33� 0.47

NAD-GCL-OPT 69.30� 0.32 73.18� 0.71 89.05� 1.06 74.55� 0.55 72.04� 0.67 83.74� 0.76 53.43� 0.26 71.94� 0.59 49.01� 0.93

O
ur

s AD-GCL-FIX 69.67� 0.51? 73.59� 0.65 89.25� 1.45 74.49� 0.52 73.32� 0.61? 85.52� 0.79? 53.00� 0.82 71.57� 1.01 49.04� 0.53

AD-GCL-OPT 69.67� 0.51? 73.81� 0.46? 89.70� 1.03 75.10� 0.39 73.32� 0.61? 85.52� 0.79? 54.93� 0.43? 72.33� 0.56? 49.89� 0.66?

Task Regression (Downstream Classi�er - Linear Regression + L2) Classi�cation (Downstream Classi�er - Logistic Regression + L2)

Dataset molesol mollipo molfreesolv ZINC-10K molbace molbbbp molclintox moltox21 molsider

Metric RMSE (shared) (#) MAE (#) ROC-AUC % (shared) (" )

F-GIN 1.173� 0.057 0.757� 0.018 2.755� 0.349 0.254� 0.005 72.97� 4.00 68.17� 1.48 88.14� 2.51 74.91� 0.51 57.60� 1.40

B
as

el
in

es RU-GIN [72] 1.706� 0.180 1.075� 0.022 7.526� 2.119 0.809� 0.022 75.07� 2.23 64.48� 2.46 72.29� 4.15 71.53� 0.74 62.29� 1.12

InfoGraph [18] 1.344� 0.178 1.005� 0.023 10.005� 4.819 0.890� 0.017 74.74� 3.64 66.33� 2.79 64.50� 5.32 69.74� 0.57 60.54� 0.90

GraphCL [24] 1.272� 0.089 0.910� 0.016 7.679� 2.748 0.627� 0.013 74.32� 2.70 68.22� 1.89 74.92� 4.42 72.40� 1.01 61.76� 1.11

A
B

-S NAD-GCL-FIX 1.392� 0.065 0.952� 0.024 5.840� 0.877 0.609� 0.010 73.60� 2.73 66.12� 1.80 73.32� 3.66 71.65� 0.94 60.41� 1.48

NAD-GCL-OPT 1.242� 0.096 0.897� 0.022 5.840� 0.877 0.609� 0.010 73.69� 3.67 67.70� 1.78 74.40� 4.92 71.65� 0.94 61.14� 1.43

O
ur

s AD-GCL-FIX 1.217� 0.087 0.842� 0.028? 5.150� 0.624? 0.578� 0.012? 76.37� 2.03 68.24� 1.47 80.77� 3.92 71.42� 0.73 63.19� 0.95

AD-GCL-OPT 1.136� 0.050? 0.812� 0.020? 4.145� 0.369? 0.544� 0.004? 77.27� 2.56 69.54� 1.92 80.77� 3.92 72.92� 0.86 63.19� 0.95

Table 1:Unsupervised learning performance for (TOP) biochemical and social network classi�cation in TU
datasets [73] (Averaged accuracy� std. over 10 runs) and (BOTTOM) chemical molecules property prediction
in OGB datasets [52] (mean� std. over 10 runs).Bold/Bold? indicats our methods outperform baselines
with � 0.5/� 2 std respectively. Fully supervised (F-GIN) results are shownonly for placing GRL methods in
perspective. Ablation-study (AB-S) results do not count as baselines.

with the same hyper-parameters for fair comparison. Adoptinglinear modelswas suggested by [40],
which explicitly attributes any performance gain/drop to the quality of learnt representations.

Tables 1 show the results for unsupervised graph level property prediction in social and chemical
domains respectively. We witness the big performance gain of AD-GCL as opposed to all baselines
across all the datasets. Note GraphCL utilizes extensive evaluation to select the best combination
of augmentions over a broad GDA family including node-dropping, edge dropping and subgraph
sampling. Our results indicate that such extensive evaluation may not be necessary while optimizing
the augmentation strategy in an adversarial way is greatly bene�cial.

We stress that edge dropping is not cherry picked as the search space of augmentation strategies.
Other search spaces may even achieve better performance, while an extensive investigation is left for
the future work.

Moreover, AD-GCL also clearly improves upon the performance against its non-adversarial counter-
parts (NAD-GCL) across all the datasets, which further demonstrates stable and signi�cant advantages
of the AD-GCL principle. Essentially, the input-graph-dependent augmentation learnt by AD-GCL
yields much bene�t. Finally, we compare AD-GCL-FIX with AD-GCL-OPT. Interestingly, two
methods achieve comparable results though AD-GCL-OPT is sometimes better. This observation
implies that the AD-GCL principle may be robust to the choice of� reg and thus motivates the analysis
in the next subsection. Moreover, weak information from the downstream tasks indeed help with
controlling the search space and further betters the performance. We also list the optimal� reg's of
AD-GCL-OPT for different datasets in Appendix F.1 for the purpose of comparison and reproduction.

5.1.1 Note on the linear downstream classi�er

We �nd that the choice of the downstream classi�er can signi�cantly affect the evaluation of the
self-supervised representations. InfoGraph [18] and GraphCL [24] adopt a non-linear SVM model as
the downstream classi�er. Such a non-linear model is more powerful than the linear model we adopt
and thus causes some performance gap between the results showed in Table 1 (TOP) and (BOTTOM)
and their original results (listed in Appendix G.2.1 as Table 8). We argue that using a non-linear
SVM model as the downstream classi�er is unfair, because the performance of even a randomly
initialized untrained GIN (RU-GIN) is signi�cantly improved (comparing results from Table 1 (TOP)
to Table 8 ). Therefore, we argue for adopting a linear classi�er protocol as suggested by [40]. That
having been said, our methods (both AD-GCL-FIX and AD-GCL-OPT) still performs signi�cantly
better than baselines in most cases, even when a non-linear SVM classifer is adopted, as shown in
Table 8. Several relative gains are there no matter whether the downstream classi�er is a simple linear

8



���D�� ���E��

���F��

Figure 3:(a) � reg v.s.expected edge drop ratioEG[
P

e ! e=jE j] (measured at saddle point of Eq.8). (b) Training
dynamics of expected drop ratio for� reg. (c) Validation performance for graph classi�cationv.s.edge drop ratio.
Compare AD-GCL and GCL with non-adversarial edge dropping. The markers on AD-GCL's performance
curves show the� reg used.

model (Tables 1) or a non-linear SVM model (Table 8). AD-GCL methods signi�cantly outperform
InfoGraph in 5 over 8 datasets and GraphCL in 6 over 8 datasets. This further provides the evidence
for the effectiveness of our method. Details on the practical bene�ts of linear downstream models can
be found in Appendix G.2.1.

5.2 Analysis of Regularizing the GDA Model

Here, we study how different� reg's impact the expected edge drop ratio of AD-GCL at the saddle
point of Eq.8 and further impact the model performance on the validation datasets. Due to the page
limitation, we focus on classi�cation tasks in the main text while leaving the discussion on regression
tasks in the Appendix F.2. Figure 3 shows the results.

As shown in Figure 3(a), a large� reg tends to yield a small expected edge drop ratio at the convergent
point, which matches our expectation.� reg ranging from 0.1 to 10.0 corresponds to dropping almost
everything (80% edges) to nothing (<10% edges). The validation performance in Figure 3(c) is out of
our expectation. We �nd that for classi�cation tasks, the performance of the encoder is extremely
robust to different choices of� reg's when trained w.r.t. the AD-GCL principle, though the edge drop
ratios at the saddle point are very different. However, the non-adversarial counterpart NAD-GCL
is sensitive to different edge drop ratios, especially on the molecule dataset (e.g., ogbg-molclitox,
ogbg-molbbbp). We actually observe the similar issue of NAD-GCL across all molecule datasets (See
Appendix F.3). More interesting aspects of our results appear at the extreme cases. When� reg � 5:0,
the convergent edge drop ratio is close to 0, which means no edge dropping, but AD-GCL still
signi�cantly outperforms naive GCL with small edge drop ratio. When� reg = 0 :3, the convergent
edge drop ratio is greater than 0.6, which means dropping more than half of the edges, but AD-GCL
still keeps reasonable performance. We suspect that such bene�t comes from the training dynamics
of AD-GCL (examples as shown in Figure 3(b)). Particularly, optimizing augmentations allows for
non-uniform edge-dropping probability. During the optimization procedure, AD-GCL pushes high
drop probability on redundant edges while low drop probability on critical edges, which allows the
encoder to differentiate redundant and critical information. This cannot be fully explained by the
�nal convergent edge drop ratio and motivates future investigation of AD-GCL from a more in-depth
theoretical perspective.

5.3 Transfer Learning

Next, we evaluate the GNN encoders trained by AD-GCL on transfer learning to predict chemical
molecule properties and biological protein functions. We follow the setting in [17] and use the same
datasets: GNNs are pre-trained on one dataset using self-supervised learning and later �ne-tuned
on another dataset to test out-of-distribution performance. Here, we only consider AD-GCL-FIX
as AD-GCL-OPT is only expected to have better performance. We adopt baselines including no
pre-trained GIN (i.e.,without self-supervised training on the �rst dataset and with only �ne-tuning),
InfoGraph [18], GraphCL [24], three different pre-train strategies in [17] including edge prediction,
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Pre-Train Dataset ZINC 2M PPI-306K
Fine-Tune Dataset BBBP Tox21 SIDER ClinTox BACE HIV MUV ToxCast PPI
No Pre-Train 65.8� 4.5 74.0� 0.8 57.3� 1.6 58.0� 4.4 70.1� 5.4 75.3� 1.9 71.8� 2.5 63.4� 0.6 64.8� 1.0
EdgePred [17] 67.3� 2.4 76.0� 0.6 60.4� 0.7 64.1� 3.7 79.9� 0.9 76.3� 1.0 74.1� 2.1 64.1� 0.6 65.7� 1.3
AttrMasking [17] 64.3� 2.8 76.7� 0.4 61.0� 0.7 71.8� 4.1 79.3� 1.6 77.2� 1.1 74.7� 1.4 64.2� 0.5 65.2� 1.6
ContextPred [17] 68.0� 2.0 75.7� 0.7 60.9� 0.6 65.9� 3.8 79.6� 1.2 77.3� 1.0 75.8� 1.7 63.9� 0.6 64.4� 1.3
InfoGraph [18] 68.8� 0.8 75.3� 0.5 58.4� 0.8 69.9� 3.0 75.9� 1.6 76.0� 0.7 75.3� 2.5 62.7� 0.4 64.1� 1.5
GraphCL [24] 69.68� 0.67 73.87� 0.66 60.53� 0.88 75.99� 2.65 75.38� 1.44 78.47� 1.22 69.8� 2.66 62.40� 0.57 67.88� 0.85

AD-GCL-FIX 70.01� 1.07 76.54� 0.82 63.28� 0.79 79.78� 3.52 78.51� 0.80 78.28� 0.97 72.30� 1.61 63.07� 0.72 68.83� 1.26
Our Ranks 1 2 1 1 4 2 5 5 1

Table 2:Transfer learning performance for chemical molecules property prediction (mean ROC-AUC� std.
over 10 runs).Bold indicates our methods outperform baselines with� 0.5 std..

Dataset NCI1 PROTEINS DD COLLAB RDT-B RDT-M5K
No Pre-Train 73.72� 0.24 70.40� 1.54 73.56� 0.41 73.71� 0.27 86.63� 0.27 51.33� 0.44
SS-GCN-A 73.59� 0.32 70.29� 0.64 74.30� 0.81 74.19� 0.13 87.74� 0.39 52.01� 0.20
GAE [20] 74.36� 0.24 70.51� 0.17 74.54� 0.68 75.09� 0.19 87.69� 0.40 53.58� 0.13
InfoGraph [18] 74.86� 0.26 72.27� 0.40 75.78� 0.34 73.76� 0.29 88.66� 0.95 53.61� 0.31
GraphCL [24] 74.63� 0.25 74.17� 0.34 76.17� 1.37 74.23� 0.21 89.11� 0.19 52.55� 0.45
AD-GCL-FIX 75.18� 0.31 73.96� 0.47 77.91� 0.73? 75.82� 0.26? 90.10� 0.15? 53.49� 0.28
Our Ranks 1 2 1 1 1 3

Table 3:Semi-supervised learning performance with 10% labels on TU datasets [73] (10-Fold Accuracy (%)�
std over 5 runs).Bold/Bold? indicate our methods outperform baselines with� 0.5 std/� 2 std respectively.

node attribute masking and context prediction that utilize edge, node and subgraph context respectively.
More detailed setup is given in Appendix G.

According to Table 2, AD-GCL-FIX signi�cantly outperforms baselines in 3 out of 9 datasets and
achieves a mean rank of 2.4 across these 9 datasets which is better than all baselines. Note that
although AD-GCL only achieves 5th on some datasets, AD-GCL still signi�cantly outperforms
InfoGraph [18] and GraphCL [24], both of which are strong GNN self-training baselines. In contrast
to InfoGraph [18] and GraphCL [24], AD-GCL achieves some performance much closer to those
baselines (EdgePred, AttrMasking and ContextPred) based on domain knowledge and extensive
evaluation in [17]. This is rather signi�cant as our method utilizes only edge dropping GDA, which
again shows the effectiveness of the AD-GCL principle.

5.4 Semi-Supervised Learning

Lastly, we evaluate AD-GCL on semi-supervised learning for graph classi�cation on the benchmark
TU datasets [73]. We follow the setting in [24]: GNNs are pre-trained on one dataset using self-
supervised learning and later �ne-tuned based on 10% label supervision on the same dataset. Again,
we only consider AD-GCL-FIX and compare it with several baselines in [24]: 1) no pre-trained
GCN, which is directly trained by the 10% labels from scratch, 2) SS-GCN-A, a baseline that
introduces more labelled data by creating random augmentations and then gets trained from scratch,
3) a predictive method GAE [20] that utilizes adjacency reconstruction in the pre-training phase, and
GCL methods, 4) InfoGraph [18] and 5) GraphCL [24]. Note that here we have to keep the encoder
architecture same and thus AD-GCL-FIX adopts GCN as the encoder. Table 3 shows the results.
AD-GCL-FIX signi�cantly outperforms baselines in 3 out of 6 datasets and achieves a mean rank of
1.5 across these 6 datasets, which again demonstrates the strength of AD-GCL.

6 Conclusions

In this work we have developed a theoretically motivated, novel principle:AD-GCLthat goes a step
beyond the conventional InfoMax objective for self-supervised learning of GNNs. The optimal GNN
encoders that are agnostic to the downstream tasks are the ones that capture the minimal suf�cient
information to identify each graph in the dataset. To achieve this goal, AD-GCL suggests to better
graph contrastive learning via optimizing graph augmentations in an adversarial way. Following
this principle, we developed a practical instantiation based on learnable edge dropping. We have
extensively analyzed and demonstrated the bene�ts of AD-GCL and its instantiation with real-world
datasets for graph property prediction in unsupervised, transfer and semi-supervised learning settings.
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